China supplier OEM Custom PPS Plastic Injection Molding Manufacturing Services Molded Household Products Parts

Product Description

OEM Custom PPS Plastic Injection Molding Manufacturing Services Molded Household Products Parts
 

Product Description

Product Name: Custom Machinery Molded Household Products Plastic injection molding part services
Product No.: SP02-0004
Shaping Mode: Plastic injection molding
Product Material: PPS
Product Dimensions: Diameter: 32*80mm; 26mm for inner
Product Feature: Flame retardant, ultra-precision dimensions, high hardness, high temperature resistance, environmental friendly
Product Used for: Gas Hot Water Heater pipe connector
Product Application: Household, commodity, Industrial, home use, Kitchen, Bathroom
Product Type: Plastic moulding, customized moulding part, injection molding part, machining part, industrial part
Product Color: Black
Precision Tolerance: +_0.01mm
Product Mould Life: 100 thousand~300 thousand times
Mould Warranty Period: 1 year or 100 thousand shots(in this period, if the mold have any problem, we will offer the parts or service by free, but it does’t  include the problems caused by wrong operation)
Ejection system: Motor/hydraulic cylinder/stripping plate/angle pin, etc….
Cooling system: Water cooling or Beryllium bronze cooling, etc.
Optional plastic materials: ABS, PPS, GPPS, HIPS, AS, MS, PMMA, PC, PA6, PA66, PA+GF, PVC, PP, PE, TPE, TPU, TPR, LCP, PBT, PETG, PC/ABS, POM, PC, PPE, PPO, etc……
Product Mould base: Standard mould base, LKM, HASCO, DME,etc……
Fast mold design: We can be within 1-3 working days after getting customer’s drawings.
Mould testing: All of the moulds can be well tested before the shipments. Videos testing the moulds are available.
Mould Lead time: Plastic moulds: 3- 4 weeks after getting the mould design confirmation.
Product Minimum order: Small orders can be accepted.
Mould making service: OEM/ODM service is available.
Product Packing: Opp bag+Carton outside, or as clients’ requirements
Mould Safe packing: In strong wooden pallets to avoid any damages during long transportation.
Mould HS Code: 848571090
Quality System ISO9001,SGS,TS16949
Specification Depends on clients’ requirements
Origin HangZhou, China

 

 

 

Detailed Photos

Injection Molding

 

 

Click here to view more>>

 

Company Profile

SENPO PRECISION Tooling Co., Ltd., Foreign Joint Ventures, was established in 2013. It focuses on the application and development of engineering plastics and focuses on high-quality engineering plastics precision parts and precision molds R&D, design and manufacturing, with a number of independent intellectual property rights.

The company’s products focus on passenger cars, commercial vehicles, new energy vehicles, high-end kitchen and bathroom appliances and other fields, providing customers with core components with high safety and important functionality. The product series includes automobile engine peripheral parts, automobile transmission system parts, automobile braking system parts, new energy vehicle parts, household water heater functional parts, household water purifier functional parts, precision industrial parts, etc.

In the context of “replacing steel with plastic”, the company aims to provide products with greater use value, is committed to the localization of high-end precision injection molded parts, and has established long-term and stable cooperative relationships with many internationally companies.

 

DEVELOPING HangZhouSTONE & HISTORY

*2014    

Founded YAMANAMI, YAMANAMI was the original company name.

*2015    

Invested 2 TOPZEN CNC machines for tooling & machining business.

*2016    

Invested another 2 TOPZEN CNC machines for business increasing.

*2017    

Invested 2 FANUC high speed CNC machines for tooling business.

*2018    

Invested 1 SODICK wire cut machine for precision tooling business.

*2019   

Registered SENPO, specializes in global tooling & engineering services.

*2571    

Invested 1 CROMA CMM measuring machine for precision tooling business.

*2571    

Invested 3 CHINAMFG mirror EDM machines for precision tooling business.

*2571    

Invested 3 new injection molding machines for product production business.

*2571    

Stop investing and focus on current customer services and developing new clients.

**FACTORY EQUIPMENT LIST
 

NAME

BRAND

COUNTRY OF ORIGINAL STROKE PRECISION QTY
CNC    Machine MAKINO F5 Japan 900 * 500 mm 0.0015mm 1
CNC   Machine FANUC α-T14iFb Japan 600 * 450 mm 0.005mm 2
CNC   Machine TOPZEN850 ZheJiang 800 * 500 mm 0.01mm 2
CNC   Machine TOPZEN650 ZheJiang 600 * 500 mm 0.01mm 1
CNC   Machine TOPZEN1165 ZheJiang 1100 * 650 mm 0.01mm 1
EDM   Machine MITSUBISHI Japan 400 * 300 mm 0.002mm 3
EDM   Machine KYOUMEN China 350*250 mm 0.01mm 3
EDM   Machine TAIYI ZheJiang 650*450 mm 0.01mm 1
CMM   Measuring Machine HEXAGON Sweden 800 * 600 mm 0.002mm 1
Project Measuring Machine 3D FAMILY ZheJiang 300*200 mm 0.002mm 1
Height Measuring Instrument Mitutoyo Japan 350 mm 0.001mm 1
Wire   Cut   Machine SODICK Japan 400 * 350 mm 0.001mm 1
Grinding   Machine ELITE Korea 400* 300 mm 0.0005mm 1
Grinding   Machine PENGJING China 400* 250 mm 0.001mm 2
Milling    Machine TAIYI ZheJiang 800* 400 mm 0.02mm      2
Injection   Machine HAITIAN China 250TON NA 2
Injection   Machine SUMITOMO

Japan

180TON NA 2

 

Our advantages:

**Really a one-stop solution for product design, prototype, mold making, injection molding, and assembly.

**Really a one-stop solution from plastic, silicone, metal, brass, and sheet metal. We work together and focus on the product, saving time on communication.

**The professional engineering team tracks the project.

**Competitive price, because we have a great, understanding of different processes and intelligent process management.

Quality warranty & Services:

** Lifetime sales-after service for all injection moulds.

** 24Hourse reply on all questions and comments.

** Mould steel life time quality warranty.(40HRC steel 100K shots warranty, 45HRC steel 1000K shots warranty).

** CNC machined and prototype according to drawing and 100% size checked before shipment.

** Material certification, dimension report, checklist for design, mould shipment will send by our engineering team accordingly.

 

Our Experience:
1. High-temperature mold
2. High-polish mold
3. Big-size mold
4. Special mold
5. Over mold, insert mold. IMD mold.

Delivery Time:

**24-48hours for any RFQ
** 3-5days for small qty CNC machined component and prototype
**4 weeks for all injection molds which sizes smaller than 450*450mm
**5-6 weeks for all injection mold which size smaller than 800*800mm
**Samples 4-7days to CHINAMFG by DHL Fedex TNT, etc…

Our Services

Product Engineerng Services

Mold  Manufacturing  Services

Product Manufacturing Services

1.Plastic & metal product 3D design support, optimizing.
 

2.Plastic & metal product engineering DFM, solution.
 

3.Plastic & metal prototype manufacturing, testing.

1.Plastic & die casting mold DFM, design, mold flow.

2.Plastic & die casting mold manufacturing.

3.Plastic & die casting mold injection molding.

1.Plastic & metal part secondary process.

2.Plastic & metal part surface treatment.

3.Plastic & metal product assembly.

 

FAQ:

Q1: Are you trading company or manufacturer ?
A1: We are manufacturer, and SENPON Precision Mould is established in 2013 with our own worshop and office

Q2: Where is your factory located?
A2: Our factory is located in Shajing, HangZhou City, ZheJiang Province, China. And it is 20 minutes from HangZhou airport
by taxi directly to our factory.

Q3: How about quality control in your factory?
A3: We believe “Quality is above everything”. We have professional team to control the quality. Our QC team mainly do the following procedures:
A) Design Optimize control
B) Mould steel hardness Inspection
C) Mould assembly Inspection
D) Mould trial report and samples Inspection
E) Final inspection for mould & packing before shipment. If you have another questions, pls feel free to contact us.

Q4: If i provide you 3d drawing of my product, can you quote the price & make the mould as per the 3d drawing?
A4:Yes. DWG, DXF, STEP, IGS and X_T files can all be used to quote price, and making mould as per your drawings can save time and money in producing your parts.

Q5: What type of plastic material is best for my design/component?
A5: Plastic Materials selection depends on the application of your products. We will give you some suggestion after we checked the function of your component. And we can make the trail mould with different materials according to your requirements.

Q6: What kind of moulds can you make?
A6: We can make all kinds of plastic injection moulds. For example:

Household parts mould : Plastic Basket Mould, Plastic Storage Box Mould, Chair &Table Mould, etc…
Appliance parts mould: Fan Mould,Air Conditioner Mould,Washing Machine Mould,TV Mould,Cooler Mould etc….
Automotive parts mould :Bumper Mould, Grill Mould,Interior Parts Mould,etc….
Thin-wall parts mould: Food Container Mould,Ice-Cream Mould, Cup Mould,etc..
Industry parts mould:Plastic Pallet Moulds, Dustbin Moulds,Crate MouldS, Transportation Moulds,etc…
Pipe Fitting Mould:
Collapsible Core Elbow Mould, PPR Pipe Fitting Mould,PVC Pipe Fitting Mould, Tee Mould,etc…

We Customized the Plastic Injection Moulds according customers requirements. If you would like to make the Injection Moulds, Welcome! And send us inquiry!

Q7: What about your payment terms?
A7: 50% deposit, and the balance will be paid before shipment.

Q8: How long to finish a mould?
A8: Mostly will be finished in 3~4 weeks, but some complex and big mould will spent more time. According to your order quantity,
the delivery time will be different.

Q9: How long of the mould warranty period?
A9: The mould warranty period is for 1 year(but damage caused by human factors or accident are not included on the scope of warranty), and destroied parts will be supplementary delivered free.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: PPS
Application: Medical, Household, Electronics, Automotive, Agricultural
Product Feature: High Hardness, Flame Retardant
Product Feature 1: High Temperature Resistance
Product Color: Black
Product Type: Injection Molding Machinery
Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China supplier OEM Custom PPS Plastic Injection Molding Manufacturing Services Molded Household Products Parts  China supplier OEM Custom PPS Plastic Injection Molding Manufacturing Services Molded Household Products Parts
editor by CX 2024-02-29